These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Contribution of Cat8 and Sip4 to the transcriptional activation of yeast gluconeogenic genes by carbon source-responsive elements.
    Author: Hiesinger M, Roth S, Meissner E, Schüller HJ.
    Journal: Curr Genet; 2001 Apr; 39(2):68-76. PubMed ID: 11405098.
    Abstract:
    The carbon source-responsive element (CSRE) functions as an activating promoter motif of gluconeogenic genes in Saccharomyces cerevisiae. The positively acting regulatory genes CAT8 and SIP4 encode CSRE-binding proteins which contribute unequally to the regulated expression of a CSRE-dependent reporter gene (85% and 15%, respectively, under conditions of glucose derepression). Deregulated variants of Cat8 and Sip4 are able to bind to the CSRE and allow glucose-insensitive gene activation, even in the absence of the other protein, arguing against the physiological significance of heterodimer formation. Gel retardation assays provide evidence for a different binding affinity of Cat8 and Sip4 to at least some CSRE sequence variants. Both efficient biosynthesis of and transcriptional activation by Sip4 require a functional CAT8 gene, while Cat8 was not dependent on SIP4. Thus, our data suggest that the apparent minor importance of Sip4 may be the result of autoregulatory cross-talk among the isofunctional activators Cat8 and Sip4. The derepression deficiency of a CSRE-dependent reporter gene in a strain lacking the Cat1 (Snf1) protein kinase can be suppressed by Sip4 fused to a strong heterologous activation domain. This finding agrees with the idea that phosphorylation by Cat1 may convert Sip4 into a functional activator.
    [Abstract] [Full Text] [Related] [New Search]