These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Possible mechanism of hypothermia induced by intracerebroventricular injection of orphanin FQ/nociceptin.
    Author: Chen X, McClatchy DB, Geller EB, Liu-Chen L, Tallarida RJ, Adler MW.
    Journal: Brain Res; 2001 Jun 22; 904(2):252-8. PubMed ID: 11406123.
    Abstract:
    Orphanin/nociceptin (OFQ/N), a 17-amino-acid peptide, is an endogenous peptide, the receptor for which is similar to mu-, delta- and kappa-opioid receptors ( approximately 65% homology). Reports indicate that OFQ/N can block the antinociception induced by mu-, delta- and kappa-opioid agonists in the rat and in the mouse, indicating that there is a functional interaction between opioid receptors and OFQ/N receptors in the nervous system. It is well known that activation of the mu- and kappa-opioid receptors results in hyperthermia and hypothermia, respectively, in Sprague-Dawley rats. The present studies were designed to examine effects of OFQ/N on body temperature (Tb) and explore whether the mechanism of T(b) change induced by OFQ/N involved the opioid system. The results show that (1) i.c.v. injection of a high dose of OFQ/N (9-18 micro g) produces hypothermia in adult rats; (2) OFQ/N (1.8 micro g, i.c.v., t=+30 s after morphine) can decrease morphine-induced hyperthermia; (3) neither the opioid receptor antagonist, naloxone (10 mg/kg, s.c., t=-15 s before OFQ/N) nor the kappa-opioid receptor antagonist nor-BNI (1 micro g/5 microl, i.c.v., t=-30 s before OFQ/N) reduces the hypothermia induced by i.c.v. injection of OFQ/N at dose of 18 micro g (P>0.05); (4) 60 micro g/5 microl AS oligo (i.c.v. treatment on days 1, 3 and 5) against OFQ/N receptors significantly reduces the hypothermia induced by i.c.v. injection of 9 micro g OFQ/N (P<0.01). These results suggest that the hypothermia induced by i.c.v. injection of a high dose of OFQ/N (9 or 18 micro g) is mediated, at least partially, by its own receptor, independent or downstream of opioid receptors in the rat brain and that OFQ/N probably acts as a physiological antagonist to reduce morphine-induced hyperthermia.
    [Abstract] [Full Text] [Related] [New Search]