These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stimulation of guanosine-5'-o-(3-[35S]thio)triphosphate binding in digitonin-permeabilized C6 rat glioma cells: evidence for an organized association of mu-opioid receptors and G protein. Author: Alt A, McFadyen IJ, Fan CD, Woods JH, Traynor JR. Journal: J Pharmacol Exp Ther; 2001 Jul; 298(1):116-21. PubMed ID: 11408532. Abstract: The guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding assay for the determination of relative opioid efficacy has been adapted to measure G protein activation in digitonin-permeabilized C6 rat glioma cells expressing a cloned mu-opioid receptor. The mu-agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) caused a 3-fold increase in [35S]GTPgammaS binding over basal in a naloxone-sensitive manner. Relative mu-agonist efficacy was DAMGO > fentanyl > or = morphine > buprenorphine. Nalbuphine showed no efficacy. G protein activation by receptors has been predicted to occur by random encounter. In this model a reduction in the number of receptors will decrease the rate of G protein activation but not the maximum number of G proteins activated. To test this model C6 mu cells were treated with the irreversible mu-antagonist beta-funaltrexamine (10 nM) prior to permeabilization. This reduced the number of mu-opioid receptors determined with [3H]diprenorphine to 23 +/- 3% of control with no change in affinity. A commensurate reduction (to 29 +/- 10% of control) in the level of [35S]GTPgammaS binding stimulated by DAMGO was observed, but the t(1/2) for [35S]GTPgammaS binding remained unchanged. Thus, random encounters of receptor and G protein failed to occur in this permeabilized cell preparation. A model that assumes an organized association of G proteins with receptors better describes the activation of G proteins by opioid mu-receptors.[Abstract] [Full Text] [Related] [New Search]