These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence for a new G protein-coupled cannabinoid receptor in mouse brain. Author: Breivogel CS, Griffin G, Di Marzo V, Martin BR. Journal: Mol Pharmacol; 2001 Jul; 60(1):155-63. PubMed ID: 11408610. Abstract: The purpose of these studies was to support the hypothesis that an undiscovered cannabinoid receptor exists in brain. [(35)S]GTP gamma S binding was stimulated by anandamide and WIN55212-2 in brain membranes from both CB(1)(+/+) and CB(1)(-/-) mice. In contrast, a wide variety of other compounds that are known to activate CB(1) receptors, including CP55940, HU-210, and Delta(9)-tetrahydrocannabinol, failed to stimulate [(35)S]GTP gamma S binding in CB(1)(-/-) membranes. In CB(1)(-/-) membranes, SR141716A affected both basal and anandamide- or WIN55212-2-induced stimulation of [(35)S]GTP gamma S binding only at concentrations greater than 1 microM. In CB(1)(+/+) membranes, SR141716A inhibited only 84% of anandamide and 67% of WIN55212-2 stimulated [(35)S]GTP gamma S binding with an affinity appropriate for mediation by CB(1) receptors (K(B) approximately 0.5 nM). The remaining stimulation seemed to be inhibited with lower potency (IC(50) approximately 5 microM) similar to that seen in CB(1)(-/-) membranes or in the absence of agonist. Further experiments determined that the effects of anandamide and WIN55212-2 were not additive, but that the effect of mu opioid, adenosine A1, and cannabinoid ligands were additive. Finally, assays of different central nervous system (CNS) regions demonstrated significant activity of cannabinoids in CB(1)(-/-) membranes from brain stem, cortex, hippocampus, diencephalon, midbrain, and spinal cord, but not basal ganglia or cerebellum. Moreover, some of these same CNS regions also showed significant binding of [(3)H]WIN55212-2, but not [(3)H]CP55940. Thus anandamide and WIN55212-2 seemed to be active in CB(1)(-/-) mouse brain membranes via a common G protein-coupled receptor with a distinct CNS distribution, implying the existence of an unknown cannabinoid receptor subtype in brain.[Abstract] [Full Text] [Related] [New Search]