These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Construction of desosamine containing polyketide libraries using a glycosyltransferase with broad substrate specificity. Author: Tang L, McDaniel R. Journal: Chem Biol; 2001 Jun; 8(6):547-55. PubMed ID: 11410374. Abstract: BACKGROUND: Combinatorial biosynthesis techniques using polyketide synthases (PKSs) in heterologous host organisms have enabled the production of macrolide aglycone libraries in which many positions of the macrolactone ring have been manipulated. However, the deoxysugar moieties of macrolides, absent in previous libraries, play a critical role in contributing to the antimicrobial properties exhibited by compounds such as erythromycin. Since the glycosidic components of polyketides dramatically alter their molecular binding properties, it would be useful to develop general expression hosts and vectors for synthesis and attachment of deoxysugars to expand the nature and size of such polyketide libraries. RESULTS: A set of nine deoxysugar biosynthetic and auxiliary genes from the picromycin/methymycin (pik) cluster was integrated in the chromosome of Streptomyces lividans to create a host which synthesizes TDP-D-desosamine. The pik desosaminyl transferase was also included so that when the strain was transformed with a previously constructed library of expression plasmids encoding genetically modified PKSs that produce different macrolactones, the resulting strains produced desosaminylated derivatives. Although conversion of the macrolactones was generally low, bioassays revealed that, unlike their aglycone precursors, these novel macrolides possessed antibiotic activity. CONCLUSIONS: Based on the structural differences among the compounds that were glycosylated it appears that the desosaminyl transferase from the pik gene cluster is quite tolerant of changes in the macrolactone substrate. Since others have demonstrated tolerance towards modifications in the sugar substituent, one can imagine employing this approach to alter both polyketide and deoxysugar pathways to produce 'unnatural' natural product libraries.[Abstract] [Full Text] [Related] [New Search]