These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification and regulation of K+ and Cl- channels in human parotid acinar cells. Author: Park K, Case RM, Brown PD. Journal: Arch Oral Biol; 2001 Sep; 46(9):801-10. PubMed ID: 11420052. Abstract: The properties of K+ channels in these cells were studied using patch-clamp methods. Two channels, with conductances of 165+/-13 pS (n=6) and 30+/-1 pS (n=3), were identified in single-channel experiments. In cell-attached patches the reversal potentials were -67+/-8 and -74+/-2 mV for the large and small conductance channel, respectively, suggesting that both channels are K+-selective. The large conductance channel was also shown to be K+-selective in inside-out patches. The open probability (P(o)) of this channel was increased at depolarizing potentials and by increasing intracellular Ca2+ concentration ([Ca2+]i). These properties suggest that the large conductance channel is a 'maxi' Ca2+-activated K+ channel (BK(Ca)). The small conductance channel was not observed in inside-out patches. Carbachol (CCh; 10(-5) M) activated the BK(Ca) channel, but not the small conductance channel, in cell-attached patches. CCh also caused a dose-dependent increase in [Ca2+]i measured by fura-2 in microspectrofluorimetric studies, with a half-maximal response at approximately 3x10(-6) M. Neither isoproterenol (10(-5) M) nor substance P (10(-6) M) affected K+-channel activity or [Ca2+]i. In whole-cell experiments, CCh caused an increase in outward current. Charybdotoxin (10(-7) M), a BK(Ca) blocker, inhibited a large component of the CCh-induced current. A large component of the charybdotoxin-insensitive current may be carried by Ca2+-activated Cl- channels, which were also observed in human parotid acinar cells. The results indicate that BK(Ca) channels make a significant contribution to the whole-cell conductance in human parotid acinar cells.[Abstract] [Full Text] [Related] [New Search]