These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Diabetes-induced microvascular dysfunction in the hydronephrotic kidney: role of nitric oxide. Author: De Vriese AS, Stoenoiu MS, Elger M, Devuyst O, Vanholder R, Kriz W, Lameire NH. Journal: Kidney Int; 2001 Jul; 60(1):202-10. PubMed ID: 11422752. Abstract: BACKGROUND: Renal hemodynamics in early diabetes are characterized by preglomerular and postglomerular vasodilation and increased glomerular capillary pressure, leading to hyperfiltration. Despite intensive research, the etiology of the renal vasodilation in diabetes remains a matter of debate. The present study investigated the controversial role of nitric oxide (NO) in the renal vasodilation in streptozotocin-induced diabetic rats. METHODS: In the renal microcirculation, basal tone and response to NO synthase blockade were studied using the in vivo hydronephrotic kidney technique. L-arginine analog N-nitro-L-arginine methyl ester (L-NAME) was administered locally to avoid confounding by systemic blood pressure effects. The expression of endothelial NO synthase (eNOS) was investigated in total kidney by immunocytochemistry and in isolated renal vascular trees by Western blotting. Urinary excretion of nitrites/nitrates was measured. RESULTS: Diabetic rats demonstrated a significant basal vasodilation of all preglomerular and postglomerular vessels versus control rats. Vasoconstriction to L-NAME was significantly increased in diabetic vessels. After high-dose L-NAME, there was no difference in diameter between diabetic and control vessels, suggesting that the basal vasodilation is mediated by NO. Immunocytochemically, the expression of eNOS was mainly localized in the endothelium of preglomerular and postglomerular vessels and glomerular capillaries, and was increased in the diabetic kidneys. Immunoblots on isolated renal vascular trees revealed an up-regulation of eNOS protein expression in diabetic animals. The urinary excretion of nitrites/nitrates was elevated in diabetic rats. CONCLUSION: The present study suggests that an up-regulation of eNOS in the renal microvasculature, resulting in an increased basal generation of NO, is responsible for the intrarenal vasodilation characteristic of early diabetes.[Abstract] [Full Text] [Related] [New Search]