These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Children's detection of pure-tone signals with random multitone maskers.
    Author: Oh EL, Wightman F, Lutfi RA.
    Journal: J Acoust Soc Am; 2001 Jun; 109(6):2888-95. PubMed ID: 11425131.
    Abstract:
    Preschoolers and adults were asked to detect a 1000-Hz signal, which was masked by a multitone complex. The frequencies and amplitudes of the components in the complex varied randomly and independently on each presentation. A staircase, cued two-interval, forced-choice procedure disguised as a "listening game" was used to obtain signal thresholds in quiet and in the presence of the multitone maskers. The number of components in the masker was fixed within an experimental condition and varied from 2 to 906 across experimental conditions. Thresholds were also measured with a broadband noise masker. Eight preschool children and eight adults were tested. Although individual differences were large, among both adults and children, there was little difference between the groups in the mean amount of masking produced by the maskers with large numbers of components (400 and 906). There was also a small but significant difference between adults and children in the mean amount of masking produced by the broadband noise. The difference between the groups was much larger with smaller numbers of components. Data obtained from the adults were basically similar to that previously reported [cf. Neff and Green, Percept. Psychophys. 41, 409-415 (1987); Oh and Lutfi, J. Acoust. Soc. Am. 104, 3489-3499 (1998)]: maskers comprised of 10-40 components produced as much as 30 to 60 dB of masking in some, but not all listeners. Those same maskers produced larger amounts of masking (70-83 dB) in many of the preschool children, although, as in the adult group, individual differences were large. The component-relative-entropy (CoRE) model [Lutfi, J. Acoust. Soc. Am. 94, 748-758 (1993)] was used to describe the differences in performance between the children and adults. According to this model the average child appears to integrate information over a larger number of auditory filters than the average adult.
    [Abstract] [Full Text] [Related] [New Search]