These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Muscle activity and muscle agrin regulate the organization of cytoskeletal proteins and attached acetylcholine receptor (AchR) aggregates in skeletal muscle fibers. Author: Bezakova G, Lømo T. Journal: J Cell Biol; 2001 Jun 25; 153(7):1453-63. PubMed ID: 11425875. Abstract: In innervated skeletal muscle fibers, dystrophin and beta-dystroglycan form rib-like structures (costameres) that appear as predominantly transverse stripes over Z and M lines. Here, we show that the orientation of these stripes becomes longitudinal in denervated muscles and transverse again in denervated electrically stimulated muscles. Skeletal muscle fibers express nonneural (muscle) agrin whose function is not well understood. In this work, a single application of > or = 10 nM purified recombinant muscle agrin into denervated muscles preserved the transverse orientation of costameric proteins that is typical for innervated muscles, as did a single application of > or = 1 microM neural agrin. At lower concentration, neural agrin induced acetylcholine receptor aggregates, which colocalized with longitudinally oriented beta-dystroglycan, dystrophin, utrophin, syntrophin, rapsyn, and beta 2-laminin in denervated unstimulated fibers and with the same but transversely oriented proteins in innervated or denervated stimulated fibers. The results indicate that costameres are plastic structures whose organization depends on electrical muscle activity and/or muscle agrin.[Abstract] [Full Text] [Related] [New Search]