These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bovine cytosolic 5'-nucleotidase acts through the formation of an aspartate 52-phosphoenzyme intermediate. Author: Allegrini S, Scaloni A, Ferrara L, Pesi R, Pinna P, Sgarrella F, Camici M, Eriksson S, Tozzi MG. Journal: J Biol Chem; 2001 Sep 07; 276(36):33526-32. PubMed ID: 11432867. Abstract: Cytosolic 5'-nucleotidase/phosphotransferase (cN-II), specific for purine monophosphates and their deoxyderivatives, acts through the formation of a phosphoenzyme intermediate. Phosphate may either be released leading to 5'-mononucleotide hydrolysis or be transferred to an appropriate nucleoside acceptor, giving rise to a mononucleotide interconversion. Chemical reagents specifically modifying aspartate and glutamate residues inhibit the enzyme, and this inhibition is partially prevented by cN-II substrates and physiological inhibitors. Peptide mapping experiments with the phosphoenzyme previously treated with tritiated borohydride allowed isolation of a radiolabeled peptide. Sequence analysis demonstrated that radioactivity was associated with a hydroxymethyl derivative that resulted from reduction of the Asp-52-phosphate intermediate. Site-directed mutagenesis experiments confirmed the essential role of Asp-52 in the catalytic machinery of the enzyme and suggested also that Asp-54 assists in the formation of the acyl phosphate species. From sequence alignments we conclude that cytosolic 5'-nucleotidase, along with other nucleotidases, belong to a large superfamily of hydrolases with different substrate specificities and functional roles.[Abstract] [Full Text] [Related] [New Search]