These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Concomitant DNA copy number amplification at 17q and 22q in dermatofibrosarcoma protuberans. Author: Kiuru-Kuhlefelt S, El-Rifai W, Fanburg-Smith J, Kere J, Miettinen M, Knuutila S. Journal: Cytogenet Cell Genet; 2001; 92(3-4):192-5. PubMed ID: 11435686. Abstract: Dermatofibrosarcoma protuberans (DFSP) is a tumor of low or intermediate malignant potential with a tendency for recurrence, but low rate of metastasis. The tumorigenesis of DFSP has recently been shown to be associated with the fusion of the collagen type I alpha 1 (COL1A1) and platelet-derived growth factor B-chain (PDGFB) genes, often as a consequence of translocation t(17;22)(q22;q13). Cytogenetically, DFSP is often characterized by supernumerary ring chromosomes containing material from chromosomes 17 and 22. A subset of DFSPs undergo fibrosarcomatous transformation de novo or upon recurrence, and contain components indistinguishable from fibrosarcoma (FS-DFSP). The fibrosarcomatous transformation appears to carry an increased risk for recurrence and metastasis, and is considered to represent tumor progression. The molecular cytogenetic events contributing to tumor progression are unknown. We used comparative genomic hybridization to analyze DNA copy number changes in 11 cases of typical DFSP and 10 cases of FS-DFSP. All cases in both groups were found to exhibit a gain or high-level amplification on chromosome 17q and the majority also on 22q. This finding is in line with previous studies, and suggests further that not only the COL1A1/PDGFB fusion gene formation but also the role of DNA copy number gains in the 17q and 22q regions is crucial per se in the pathogenesis of DFSP. Even though FS-DFSPs displayed a trend toward increase in the number of DNA copy number changes, the difference was not statistically significant, which indicates that mechanisms other than copy number changes are important in the transformation process of DFSP.[Abstract] [Full Text] [Related] [New Search]