These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Overexpression of EC-SOD suppresses endothelial-cell-mediated LDL oxidation.
    Author: Takatsu H, Tasaki H, Kim HN, Ueda S, Tsutsui M, Yamashita K, Toyokawa T, Morimoto Y, Nakashima Y, Adachi T.
    Journal: Biochem Biophys Res Commun; 2001 Jul 06; 285(1):84-91. PubMed ID: 11437376.
    Abstract:
    Reactive oxygen species have been proposed to play important roles in atherosclerosis. To investigate the protective role of extracellular superoxide dismutase (EC-SOD), its inhibition of endothelial-cell-mediated LDL oxidation was examined. We constructed the recombinant adenovirus AxCAEC-SOD expressing human EC-SOD by CAG promoter. Infection of endothelial cells with AxCAEC-SOD resulted in EC-SOD protein secretion in a dose-dependent manner and a decrease of endothelial-cell-derived superoxide production. Moreover, it was proven to coexist with heparan sulfate by immunohistochemical staining. Endothelial-cell-mediated LDL oxidation enhanced by ferric-sodium EDTA was inhibited by 47% in TBARS formation by AxCAEC-SOD infection. In agarose gel electrophoresis, AxCAEC-SOD decreased the negative charge of oxidized LDL by 50% and suppressed fragmentation of apolipoprotein B. These results suggested that human EC-SOD localized in the extracellular space and reduced endothelial-cell-mediated LDL oxidation. In subendothelial space, EC-SOD bound on heparan sulfate might suppress LDL oxidation through reduction of superoxide anion.
    [Abstract] [Full Text] [Related] [New Search]