These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An inhibitor of inducible nitric oxide synthase and scavenger of peroxynitrite prevents diabetes development in NOD mice. Author: Suarez-Pinzon WL, Mabley JG, Strynadka K, Power RF, Szabó C, Rabinovitch A. Journal: J Autoimmun; 2001 Jun; 16(4):449-55. PubMed ID: 11437493. Abstract: Peroxynitrite (ONOO(-)) is a highly reactive oxidant produced by the interaction of the free radicals superoxide (O*-2) and nitric oxide (NO(*)). In a previous study, we found that peroxynitrite is formed in islet beta-cells of nonobese diabetic (NOD) mice. Here, we report that guanidinoethyldisulphide (GED), a selective inhibitor of inducible nitric oxide synthase (iNOS) and scavenger of peroxynitrite prevents diabetes in NOD mice. GED treatment of female NOD mice, starting at age 5 weeks, delayed diabetes onset (from age 12 to 22 weeks) and significantly decreased diabetes incidence at 30 weeks (from 80% to 17%). GED did not prevent pancreatic islet infiltration by leukocytes; however, beta-cells that stained positive for nitrotyrosine (a marker of peroxynitrite) were significantly decreased in islets of GED-treated mice (1+/-1%) compared with vehicle-treated mice (30+/-9%). In addition, GED significantly inhibited nitric oxide and nitrotyrosine formation and decreased destruction of beta-cells in NOD mouse islets incubated in vitro with the combination of proinflammatory cytokines interleukin 1-beta (IL-1beta), tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma). These findings indicate that both superoxide and nitric oxide radicals contribute to islet beta-cell destruction in autoimmune diabetes via peroxynitrite formation in the beta-cells.[Abstract] [Full Text] [Related] [New Search]