These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of dietary N-(4-hydroxyphenyl)retinamide on N-nitrosomethylbenzylamine metabolism and esophageal tumorigenesis in the Fischer 344 rat.
    Author: Gupta A, Nines R, Rodrigo KA, Aziz RA, Carlton PS, Gray DL, Steele VE, Morse MA, Stoner GD.
    Journal: J Natl Cancer Inst; 2001 Jul 04; 93(13):990-8. PubMed ID: 11438564.
    Abstract:
    BACKGROUND: 9-cis-Retinoic acid (9-cis-RA) and N-(4-hydroxyphenyl)retinamide (4-HPR) are effective chemopreventive agents against epithelial tumors in the oral cavity, breast, and prostate. We tested the inhibitory activity of these retinoids against N-nitrosomethylbenzylamine (NMBA)-induced tumorigenesis in the rat esophagus. METHODS: Male Fischer 344 rats were randomly assigned to receive diets either lacking or containing 9-cis-RA or 4-HPR for 1 week before tumor initiation with NMBA and then for the duration of the study. NMBA metabolism, O(6)-methylguanine adduct formation, and cytochrome P450 messenger RNA (mRNA) expression in the esophagi of the rats were studied to investigate the mechanisms by which dietary 4-HPR affects tumorigenesis. All statistical tests were two-sided. RESULTS: Dietary 4-HPR resulted in a dose-dependent and statistically significant enhancement (P<.05) of tumorigenesis in response to NMBA. In two different tumor bioassays, the mean tumor multiplicity for rats fed the highest concentration of dietary 4-HPR (0.8 g/kg diet) was increased by 5.9 tumors (95% confidence interval [CI] = 1.7 to 10.1 tumors) and 6.7 tumors (95% CI = 5.6 to 7.8 tumors) compared with the mean tumor multiplicity for rats that received the control diet lacking 4-HPR. Animals fed diets containing 9-cis-RA displayed no statistically significant increase in tumorigenesis. Compared with animals fed a diet lacking 4-HPR, animals fed 4-HPR had increased NMBA metabolism in esophageal explant cultures and had higher levels of O(6)-methylguanine DNA adducts and CYP2A3 mRNA in their esophagi. CONCLUSIONS: Dietary 4-HPR enhances tumorigenesis in response to NMBA in the rat esophagus by increasing tumor initiation events. Dietary 4-HPR may exert paradoxical effects at some sites, such as the aerodigestive tract, by modulating the bioactivation of carcinogens in target tissues.
    [Abstract] [Full Text] [Related] [New Search]