These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanism of fat-induced hepatic gluconeogenesis: effect of metformin.
    Author: Song S, Andrikopoulos S, Filippis C, Thorburn AW, Khan D, Proietto J.
    Journal: Am J Physiol Endocrinol Metab; 2001 Aug; 281(2):E275-82. PubMed ID: 11440903.
    Abstract:
    High-fat feeding has been shown to cause hepatic insulin resistance. The aims of this study were to investigate the biochemical steps responsible for enhanced gluconeogenesis as a result of increased dietary fat intake and the site or sites at which the antihyperglycemic agent metformin acts to inhibit this process. Male Hooded Wistar rats were fed either a standard chow diet (5% fat by weight) or a high-fat diet (60% fat by weight) for 14 days with or without metformin. Total endogenous glucose production and gluconeogenesis were determined using [6-(3)H]glucose and [U-(14)C]alanine, respectively. Gluconeogenic enzyme activity and, where appropriate, protein and mRNA levels were measured in liver tissues. The high-fat diet increased endogenous glucose production (21.9 +/- 4.4 vs. 32.2 +/- 4.8 micromol x kg(-1) x min(-1), P < 0.05) and alanine gluconeogenesis (4.5 +/- 0.9 vs. 9.6 +/- 1.9 micromol x kg(-1) x min(-1), P < 0.05). Metformin reduced both endogenous glucose production (32.2 +/- 4.8 vs. 16.1 +/- 2.1 micromol x kg(-1) x min(-1), P < 0.05) and alanine gluconeogenesis (9.6 +/- 1.9 vs. 4.7 +/- 0.8 micromol x kg(-1) x min(-1), P < 0.05) after high-fat feeding. These changes were reflected in liver fructose-1,6-bisphosphatase protein levels (4.5 +/- 0.9 vs. 9.6 +/- 1.9 arbitrary units, P < 0.05 chow vs. high-fat feeding; 9.5 +/- 1.9 vs. 4.7 +/- 0.8 arbitrary units, P < 0.05 high fat fed in the absence vs. presence of metformin) but not in changes to the activity of other gluconeogenic enzymes. There was a significant positive correlation between alanine gluconeogenesis and fructose-1,6-bisphosphatase protein levels (r = 0.56, P < 0.05). Therefore, excess supply of dietary fat stimulates alanine gluconeogenesis via an increase in fructose-1,6-bisphosphatase protein levels. Metformin predominantly inhibits alanine gluconeogenesis by preventing the fat-induced changes in fructose-1,6-bisphosphatase levels.
    [Abstract] [Full Text] [Related] [New Search]