These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Adenovirally-mediated transfer of E2F-1 potentiates chemosensitivity of human glioma cells to temozolomide and BCNU. Author: Gomez-Manzano C, Lemoine MG, Hu M, He J, Mitlianga P, Liu TJ, Yung AW, Fueyo J, Groves MD. Journal: Int J Oncol; 2001 Aug; 19(2):359-65. PubMed ID: 11445852. Abstract: The therapeutic efficacy of standard cancer treatments such as chemotherapy may be improved if they are combined with gene-therapy. Less than 30% of patients with glioblastoma multiforme respond to adjuvant chemotherapy. Actively dividing cells are generally more sensitive to chemotherapy than are non-dividing cells. To determine whether forced cell-cycle progression selectively sensitizes tumor cells to alkylating agents, we examined the effects of overexpressing the E2F-1 protein (a positive regulator of cell-cycle progression) on the sensitivity of two malignant human glioma cell lines, U-251 MG and D-54 MG, to BCNU and temozolomide. Treating these cells with 20-35 microM BCNU or 20-30 microM temozolomide resulted in 50% growth inhibition (IC50) within 4 or 6 days, respectively. By contrast, cells that were first induced to overexpress E2F-1 protein by infection with an adenoviral vector had IC50s that were 37-50% lower. Conversely, transferring the cyclin-dependent kinase inhibitors p16 and p21 to the cells, also by adenoviral infection, produced 3 to 4-fold increases in chemoresistance. Cell-cycle analyses showed that the combination of E2F-1 overexpression and treatment with BCNU or temozolomide increased the proportion of cells in S phase, but the combination of p16 or p21 overexpression and drug treatment reduced the proportion of cells in S phase. These observations suggest that overexpression of genes that positively control cell-cycle progression may be useful for increasing the sensitivity of glioma cells to alkylating agents.[Abstract] [Full Text] [Related] [New Search]