These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interaction of farnesylated PRL-2, a protein-tyrosine phosphatase, with the beta-subunit of geranylgeranyltransferase II. Author: Si X, Zeng Q, Ng CH, Hong W, Pallen CJ. Journal: J Biol Chem; 2001 Aug 31; 276(35):32875-82. PubMed ID: 11447212. Abstract: Protein of regenerating liver (PRL)-1, -2, and -3 comprise a subgroup of closely related protein-tyrosine phosphatases featuring a C-terminal prenylation motif conforming to either the consensus sequence for farnesylation, CAAX, or geranylgeranylation, CCXX. Yeast two-hybrid screening for PRL-2-interacting proteins identified the beta-subunit of Rab geranylgeranyltransferase II (betaGGT II). The specific interaction of betaGGT II with PRL-2 but not with PRL-1 or -3 occurred in yeast and HeLa cells. Chimeric PRL-1/-2 molecules were tested for their interaction with betaGGT II, and revealed that the C-terminal region of PRL-2 is required for interaction, possibly the PRL variable region immediately preceeding the CAAX box. Additionally, PRL-2 prenylation is prequisite for betaGGT II binding. As prenylated PRL-2 is localized to the early endosome, we propose that this is where the interaction occurs. PRL-2 is not a substrate for betaGGT II, as isoprenoid analysis showed that PRL-2 was solely farnesylated in vivo. Co-expression of the alpha-subunit (alpha) of GGT II, betaGGT II, and PRL-2 resulted in alpha/betaGGT II heterodimer formation and prevented PRL-2 binding. Expression of PRL-2 alone inhibited the endogenous alpha/betaGGT II activity in HeLa cells. Together, these results indicate that the binding of alphaGGT II and PRL-2 to betaGGT II is mutually exclusive, and suggest that PRL-2 may function as a regulator of GGT II activity.[Abstract] [Full Text] [Related] [New Search]