These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calbindin-D28k and calretinin immunoreactive neurons in the olfactory bulb of the musk shrew, Suncus murinus.
    Author: Kakuta S, Oda S, Gotoh Y, Kishi K.
    Journal: Brain Res Dev Brain Res; 2001 Jul 23; 129(1):11-25. PubMed ID: 11454409.
    Abstract:
    The distribution, morphological features, and postnatal development of calbindin-D28k (CB) and calretinin (CR) immunoreactive neurons in the main olfactory bulb (MOB) of the musk shrew, Suncus murinus, were studied by immunostaining to determine the degree of colocalization of CB and CR, and the relationship of CB and CR to neuron development in the MOB of animals of the order Insectivora. In adults, CB-positive neurons were identified as periglomerular and perinidal cells in the periglomerular region, as superficial short-axon cells in the external plexiform layer, and as four types of interneurons (Cajal, horizontal, Golgi, and bitufted cells) in the mitral cell, internal plexiform, and granule cell layers. CR-positive neurons were identified as projection neurons (tufted and mitral cells) and interneurons (periglomerular, perinidal, and granule cells). On postnatal days 1 and 3, CB-positive neurons revealed numerous processes finely arborized near the somata, and were morphologically unidentifiable. At the same time, CR-positive neurons were identified as young periglomerular and granule cells, and as migrating bipolar cells extending leading processes with growth cones in each layer of the MOB and the subependymal layer between the anterior lateral ventricle and the center of the MOB. On postnatal day 28, mature CB-positive and CR-positive interneurons were distributed in their corresponding layers, whereas migrating CR-positive bipolar cells were rarely detected. No cells colocalized CB and CR. The results suggest that perinidal cells in the shrew MOB may develop postnatally, together with glomerular and granule cells. We suggest that CB is associated with mechanisms of the outgrowth of neuronal processes, whereas CR is involved in mechanisms of cell migration and outgrowth of neuronal processes, in some types of neurons in the developing stage of the shrew MOB.
    [Abstract] [Full Text] [Related] [New Search]