These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Course of placental 11beta-hydroxysteroid dehydrogenase type 2 and 15-hydroxyprostaglandin dehydrogenase mRNA expression during human gestation.
    Author: Schoof E, Girstl M, Frobenius W, Kirschbaum M, Repp R, Knerr I, Rascher W, Dötsch J.
    Journal: Eur J Endocrinol; 2001 Aug; 145(2):187-92. PubMed ID: 11454515.
    Abstract:
    BACKGROUND: During human pregnancy, 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) plays an important role in protecting the fetus from high maternal glucocorticoid concentrations by converting cortisol to inactive cortisone. Furthermore, 11beta-HSD2 is indirectly involved in the regulation of the prostaglandin inactivating enzyme 15-hydroxyprostaglandin dehydrogenase (PGDH), because cortisol reduces the gene expression and enzyme activity of PGDH in human placental cells. OBJECTIVE: To examine developmental changes in placental 11beta-HSD2 and PGDH gene expression during the 2nd and 3rd trimesters of human pregnancies. METHODS: In placental tissue taken from 20 healthy women with normal pregnancy and 20 placentas of 17 mothers giving birth to premature babies, 11beta-HSD2 and PGDH mRNA expression was determined using quantitative real-time PCR. RESULTS: Placental mRNA expression of 11beta-HSD2 and PGDH increased significantly with gestational age (r=0.55, P=0.0002 and r=0.42, P=0.007). In addition, there was a significant correlation between the two enzymes (r=0.58, P<0.0001). CONCLUSIONS: In the course of pregnancy there is an increase in 11beta-HSD2 and PGDH mRNA expression in human placental tissue. This adaptation of 11beta-HSD2 prevents increasing maternal cortisol concentrations from transplacental passage and is exerted at the gene level. 11beta-HSD2 up-regulation may also lead to an increase in PGDH mRNA concentrations that, until term, possibly delays myometrial contractions induced by prostaglandins.
    [Abstract] [Full Text] [Related] [New Search]