These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. Author: Secomb TW, Hsu R, Pries AR. Journal: Am J Physiol Heart Circ Physiol; 2001 Aug; 281(2):H629-36. PubMed ID: 11454566. Abstract: Interior surfaces of capillaries are lined with macromolecules forming an endothelial surface layer (ESL). A theoretical model is used to investigate effects of flow velocity on motion and axisymmetric deformation of red blood cells in a capillary with an ESL. Cell deformation is analyzed, including effects of membrane shear and bending elasticity. Plasma flow around the cell and through the ESL is computed using lubrication theory. The ESL is represented as a porous layer that exerts compressive forces on red blood cells that penetrate it. According to the model, hydrodynamic pressures generated by plasma flow around the cell squeeze moving red blood cells into narrow elongated shapes. If the ESL is 0.7 microm wide, with hydraulic resistivity of 2 x 10(8) dyn x s x cm(-4), and exerts a force of 20 dyn/cm2, predicted variation with flow velocity of the gap width between red blood cell and capillary wall agrees well with observations. Predicted gap at a velocity of 0.1 mm/s is approximately 0.6 microm vs. approximately 0.2 microm with no ESL. Predicted flow resistance increases markedly at low velocities. The model shows that exclusion of red blood cells from the ESL in flowing capillaries can result from hydrodynamic forces generated by plasma flow through the ESL.[Abstract] [Full Text] [Related] [New Search]