These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction between cytochrome c2 and the photosynthetic reaction center from Rhodobacter sphaeroides: effects of charge-modifying mutations on binding and electron transfer.
    Author: Tetreault M, Rongey SH, Feher G, Okamura MY.
    Journal: Biochemistry; 2001 Jul 24; 40(29):8452-62. PubMed ID: 11456482.
    Abstract:
    The electrostatic interactions governing binding and electron transfer from cytochrome c(2) (cyt c(2)) to the reaction center (RC) from the photosynthetic bacteria Rhodobacter sphaeroides were studied by using site-directed mutagenesis to change the charges of residues on the RC surface. Charge-reversing mutations (acid --> Lys) decreased the binding affinity for cyt c(2). Dissociation constants, K(D) (0.3--250 microM), were largest for mutations of Asp M184 and nearby acid residues, identifying the main region for electrostatic interaction with cyt c(2). The second-order rate constants, k(2) (1--17 x 10(8) M(-1) s(-1)), increased with increasing binding affinity (log k(2) vs log 1/K(D) had a slope of approximately 0.4), indicating a transition state structurally related to the final complex. In contrast, first-order electron transfer rates, k(e), for the bound cyt did not change significantly (<3-fold), indicating that electron tunneling pathways were unchanged by mutation. Charge-neutralizing mutations (acid --> amide) showed changes in binding free energies of approximately 1/2 the free energy changes due to the corresponding charge-reversing mutations, suggesting that the charges in the docked complex remain well solvated. Charge-enhancing mutations (amide --> acid) produced free energy changes of the same magnitude (but opposite sign) as changes due to the charge-neutralizing mutations in the same region, indicating a diffuse electrostatic potential due to cyt c(2). A two-domain model is proposed, consisting of an electrostatic docking domain with charged surfaces separated by a water layer and a hydrophobic tunneling domain with atomic contacts that provide an efficient pathway for electron transfer.
    [Abstract] [Full Text] [Related] [New Search]