These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of the copper-sulfur chromophores in nitrous oxide reductase by resonance raman spectroscopy: evidence for sulfur coordination in the catalytic cluster.
    Author: Alvarez ML, Ai J, Zumft W, Sanders-Loehr J, Dooley DM.
    Journal: J Am Chem Soc; 2001 Jan 31; 123(4):576-87. PubMed ID: 11456570.
    Abstract:
    Nitrous oxide reductase (N(2)OR) from Pseudomonas stutzeri, a dimeric enzyme with a canonical metal ion content of at least six Cu ions per subunit, contains two types of multinuclear copper sites: Cu(A) and Cu(Z). An electron-transfer role for the dinuclear Cu(A) site is indicated based on its similarity to the Cu(A) site in cytochrome c oxidase (CcO), a dicysteinate-bridged, mixed-valence cluster. The Cu(Z) site is the catalytic site, which had long been thought to have novel spectroscopic properties. However, the low-energy electronic transitions and resonance Raman features attributable to Cu(Z) have been difficult to reconcile with a lack of conserved cysteine residues in standard alignments of N(2)OR sequences, other than those associated with the Cu(A) site. Recent evidence indicates that nitrous oxide reductase contains acid-labile sulfide and that this sulfide is a constituent of the Cu(Z) site (Rasmussen, T.; Berks, B. C.; Sanders-Loehr, J.; Dooley, D. M.; Zumft, W. G.; Thomson, A. J. Biochemistry 2000, 39, 12753-12756). We have used resonance Raman (RR) spectroscopy to selectively probe the Cu(A) and Cu(Z) sites of N(2)OR in three oxidation states (oxidized, semireduced, and reduced) as well as Cu(A)-only and Cu(Z)-only variants. The Cu(A) (mixed-valence, also designated as A(mv)) RR spectrum exhibits 10 vibrational modes between 220 and 410 cm(-1), with >1-cm(-1) (34)S isotope shifts that sum to -16.6 cm(-1). Many of these modes are also sensitive to (65)Cu and (15)N(His) and, thus, can be assigned to coupling of the Cu-S stretch, nu(Cu-S), with cysteine and histidine vibrations of the Cu(2)Cys(2)His(2) core. The RR spectrum of the Cu(Z) site (Z(ox)) reveals a novel Cu-sulfur chromophore with four S isotope-sensitive modes at 293, 347, 352, and 408 cm(-1), with a total (34)S shift of -19.9 cm(-)(1). The magnitude of the S isotope shifts and wide spread of perturbed frequencies are similar to those observed in Cu(A) and therefore suggest a sulfur-bridged cluster in Z(ox). The Z(ox) site has its nu(Cu-S)-containing modes at higher energy and exhibits less mixing with ligand deformations, compared to Cu(A). Reduction by dithionite produces a mixed-valence Cu(Z) site (Z(mv)) with six S isotope-sensitive RR modes between 282 and 382 cm(-1) and a total (34)S-shift of -16.9 cm(-1). The observation of a nearly identical RR spectrum in the C622D variant of N(2)OR, which lacks one of the conserved Cu(A) Cys residues, establishes that Cu-S vibrations observed in this variant arise from the Z(mv) site. Furthermore, none of the features assigned to Cu(Z) are detected in a second variant that contains only Cu(A). Therefore the resonance Raman spectra reported here provide compelling evidence for a unique Cu-S cluster in the catalytic site of nitrous oxide reductase.
    [Abstract] [Full Text] [Related] [New Search]