These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. The role of SDF-1/CXCR4 interactions. Author: Lapidot T. Journal: Ann N Y Acad Sci; 2001 Jun; 938():83-95. PubMed ID: 11458529. Abstract: The mechanism of hematopoietic stem cell migration and repopulation is not fully understood. Murine fetuses that lack the chemokine stromal-derived factor one (SDF-1null) or its receptor CXCR4 (CXCR4null) have multiple defects that are lethal, including impaired bone marrow hematopoiesis. These results suggest a major role for SDF-1/CXCR4 interactions in murine stem cell homing from the fetal liver into the bone marrow and its repopulation during development. SDF-1 is highly conserved between different species. Human and murine SDF-1 are cross-reactive and differ in one amino acid. Recently, we reported that SDF-1 and CXCR4 are essential for homing and repopulation of immune-deficient NOD/SCID and B2mnull NOD/SCID mice by human stem cells. In addition, immature human CD34+ cells and primitive CD34+/CD38-/low cells, which do not migrate toward a gradient of SDF-1 in vitro, and do not home and repopulate in vivo the murine bone marrow, can become functional repopulating cells by short-term 16-48 hr in vitro stimulation with cytokines such as SCF and IL-6 prior to transplantation. These cytokines increase surface CXCR4 expression, migration toward SDF-1, and in vivo homing and repopulation. We discuss the pleiotropic roles of SDF-1/CXCR4 interactions in human stem cell migration, development, and repopulation in transplanted immune-deficient mice.[Abstract] [Full Text] [Related] [New Search]