These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stability of lysosomal and cell membranes in haemocytes of the common mussel (Mytilus edulis): effect of low temperatures. Author: Camus L, Grøsvik BE, Børseth JF, Jones MB, Depledge MH. Journal: Mar Environ Res; 2000; 50(1-5):325-9. PubMed ID: 11460712. Abstract: Expanding industrial activities in the Arctic require an urgent assessment of the toxicity of chemicals at low temperatures. Organisms acclimatized to low temperature exhibit specific adaptations. For example, the amount of unsaturated lipids is increased to maintain the fluidity of the cell membranes. It has been hypothesized that such temperature-induced alterations in membrane lipid composition may affect the stability of lysosomal and cell membranes in the common mussel, Mytilus edulis, an organism exposed to seasonal temperature extremes. As mussels may be exposed to petroleum compounds along industrialized coastlines, we tested the combined effects of exposure to low temperature and the petroleum compound, phenanthrene, on haemocyte membrane stability. Test animals, acclimated to either 0 or 10 degrees C, were exposed to phenanthrene (0 = control or 500 micrograms l-1) and haemocytes were examined using the neutral red retention assay (lysosomal stability) and a fluorescence assay (cell membrane stability). At 0 degree C, lysosomal and cell membranes from uncontaminated mussels were destabilized compared with 10 degrees C (P = 0.0005). No significant effects (P > 0.05) of phenanthrene were detected at either temperature. Possible mechanisms underlying membrane destabilization include a weaker physical resistance of the membrane due to a higher amount of unsaturated lipids, a potentially higher level of reactive oxygen radicals at low temperature and the higher susceptibility of unsaturated lipids to oxidative stress. More work is required to better understand the consequences of this membrane destabilization at low temperature on the susceptibility of the organism to pollutants.[Abstract] [Full Text] [Related] [New Search]