These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Coordinated agonist regulation of receptor and G protein palmitoylation and functional rescue of palmitoylation-deficient mutants of the G protein G11alpha following fusion to the alpha1b-adrenoreceptor: palmitoylation of G11alpha is not required for interaction with beta*gamma complex.
    Author: Stevens PA, Pediani J, Carrillo JJ, Milligan G.
    Journal: J Biol Chem; 2001 Sep 21; 276(38):35883-90. PubMed ID: 11461908.
    Abstract:
    Transfection of either the alpha(1b)-adrenoreceptor or Galpha(11) into a fibroblast cell line derived from a Galpha(q)/Galpha(11) double knockout mouse failed to produce elevation of intracellular [Ca(2+)] upon the addition of agonist. Co-expression of these two polypeptides, however, produced a significant stimulation. Co-transfection of the alpha(1b)-adrenoreceptor with the palmitoylation-resistant C9S,C10S Galpha(11) also failed to produce a signal, and much reduced and kinetically delayed signals were obtained using either C9S Galpha(11) or C10S Galpha(11). Expression of a fusion protein between the alpha(1b)-adrenoreceptor and Galpha(11) allowed [Ca(2+)](i) elevation, and this was also true for a fusion protein between the alpha(1b)-adrenoreceptor and C9S,C10S Galpha(11), since this strategy ensures proximity of the two polypeptides at the cell membrane. For both fusion proteins, co-expression of transducin alpha, as a beta.gamma-sequestering agent, fully attenuated the Ca(2+) signal. Both of these fusion proteins and one in which an acylation-resistant form of the receptor was linked to wild type Galpha(11) were also targets for agonist-regulated [(3)H]palmitoylation and bound [(35)S]guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) in an agonist concentration-dependent manner. The potency of agonist to stimulate [(35)S]GTPgammaS binding was unaffected by the palmitoylation potential of either receptor or G protein. These studies provide clear evidence for coordinated, agonist-mediated regulation of the post-translational acylation of both a receptor and partner G protein and demonstrate the capacity of such fusions to bind and then release beta.gamma complex upon agonist stimulation whether or not the G protein can be palmitoylated. They also demonstrate that Ca(2+) signaling in EF88 cells by such fusion proteins is mediated via release of the G protein beta.gamma complex.
    [Abstract] [Full Text] [Related] [New Search]