These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of high-frequency oscillation on endogenous surfactant in an acute lung injury model.
    Author: Kerr CL, Veldhuizen RA, Lewis JF.
    Journal: Am J Respir Crit Care Med; 2001 Jul 15; 164(2):237-42. PubMed ID: 11463594.
    Abstract:
    This study evaluated the effects of high-frequency oscillation (HFO) and conventional mechanical ventilation (CMV) on gas exchange and the pulmonary surfactant system in an acute lung injury model. Following induction of lung injury with N-nitroso-n-methylurethane, adult rabbits were anesthetized and randomized to one of the following ventilatory strategies: HFO for 120 min, CMV for 120 min, HFO for 60 min, followed by CMV for 60 min, CMV for 60 min followed by HFO for 60 min or CMV for 60 min. Separate animals were ventilated using CMV with a lower tidal volume and a positive end-expiratory pressure level that was increased throughout the experimental period. Oxygenation was significantly greater in animals ventilated with HFO compared with animals ventilated with CMV. The proportion of surfactant in large aggregate forms was significantly greater following ventilatory support with HFO compared with CMV. Surfactant aggregate conversion was also significantly lower during HFO compared with CMV. We conclude that in our model of acute lung injury, HFO was a superior mode of ventilation and reduced the conversion of alveolar surfactant large aggregates into small aggregate forms, resulting in a greater percentage of large aggregate forms in the alveolar space.
    [Abstract] [Full Text] [Related] [New Search]