These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhanced proliferation and increased IFN-gamma production in T cells by signal transduced through TNF-related apoptosis-inducing ligand. Author: Chou AH, Tsai HF, Lin LL, Hsieh SL, Hsu PI, Hsu PN. Journal: J Immunol; 2001 Aug 01; 167(3):1347-52. PubMed ID: 11466352. Abstract: TNF-related apoptosis-inducing ligand (TRAIL, also called Apo2L), a novel member of TNF superfamily, induces apoptosis in transformed cell lines of diverse origin. TRAIL is expressed in most of the cells, and the expression is up-regulated in activated T cells. Four receptors for TRAIL have been identified, and there is complex interplay between TRAIL and TRAIL receptors in vivo. The actual biological function of TRAIL/TRAIL receptor is still not clear. Growing evidence has demonstrated that members of TNF superfamily transduce signals after engagement with their receptors. Cross-linking of TRAIL by plate-bound rTRAIL receptor, death receptor 4-Fc fusion protein enhanced T cell proliferation and increased IFN-gamma production in conjunction with immobilized suboptimal anti-CD3 stimulation in mouse splenocytes. The increase of T cell proliferation by death receptor 4-Fc was dose dependent, and this effect could be blocked by soluble rTRAIL proteins, indicating the occurrence of reverse signaling through TRAIL on T cell. The enhanced secretion of IFN-gamma mediated via TRAIL could be blocked by SB203580, a p38 mitogen-activated protein kinase-specific inhibitor. Thus, in addition to its role in inducing apoptosis by binding to the death receptors, TRAIL itself can enhance T cell proliferation after TCR engagement and signal the augmentation of IFN-gamma secretion via a p38-dependent pathway. This provides another example of reverse signaling by a member of TNF superfamily. In conclusion, our data suggest that TRAIL can itself transduce a reverse signal, and this may shed light on the biological function of TRAIL.[Abstract] [Full Text] [Related] [New Search]