These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: P2X3 knock-out mice reveal a major sensory role for urothelially released ATP.
    Author: Vlaskovska M, Kasakov L, Rong W, Bodin P, Bardini M, Cockayne DA, Ford AP, Burnstock G.
    Journal: J Neurosci; 2001 Aug 01; 21(15):5670-7. PubMed ID: 11466438.
    Abstract:
    The present study explores the possible involvement of a purinergic mechanism in mechanosensory transduction in the bladder using P2X(3) receptor knock-out (P2X(3)-/-) and wild-type control (P2X(3)+/+) mice. Immunohistochemistry revealed abundant nerve fibers in a suburothelial plexus in the mouse bladder that are immunoreactive to anti-P2X(3). P2X(3)-positive staining was completely absent in the subepithelial plexus of the P2X(3)-/- mice, whereas staining for calcitonin gene-related peptide and vanilloid receptor 1 receptors remained. Using a novel superfused mouse bladder-pelvic nerve preparation, we detected a release of ATP proportional to the extent of bladder distension in both P2X(3)+/+ and P2X(3)-/- mice, although P2X(3)-/- bladder had an increased capacity compared with that of the P2X(3)+/+ bladder. The activity of multifiber pelvic nerve afferents increased progressively during gradual bladder distension (at a rate of 0.1 ml/min). However, the bladder afferents from P2X(3)-/- mice showed an attenuated response to bladder distension. Mouse bladder afferents of P2X(3)+/+, but not P2X(3)-/-, were rapidly activated by intravesical injections of P2X agonists (ATP or alpha,beta-methylene ATP) and subsequently showed an augmented response to bladder distension. By contrast, P2X antagonists [2',3'-O-(2,4,6-trinitrophenyl)-ATP and pyridoxal 5-phosphate 6-azophenyl-2',4'-disulfonic acid] and capsaicin attenuated distension-induced discharges in bladder afferents. These data strongly suggest a major sensory role for urothelially released ATP acting via P2X(3) receptors on a subpopulation of pelvic afferent fibers.
    [Abstract] [Full Text] [Related] [New Search]