These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: TFEC can function as a transcriptional activator of the nonmuscle myosin II heavy chain-A gene in transfected cells.
    Author: Chung MC, Kim HK, Kawamoto S.
    Journal: Biochemistry; 2001 Jul 31; 40(30):8887-97. PubMed ID: 11467950.
    Abstract:
    Transcription of the human nonmuscle myosin II heavy chain-A (NMHC-A) gene is regulated via multiple elements located in intron 1, including element F which contains an E-box. In this study we have identified and characterized the factors that are capable of binding to element F. Yeast one-hybrid screening using element F allowed isolation of cDNAs encoding transcriptional factors TFEC, TFE3, and USF2, each of which contains basic helix-loop-helix and leucine zipper motifs. Furthermore, cDNA cloning by polymerase chain reaction yielded cDNAs for two TFEC isoforms, designated TFEC-l and TFEC-s, which are generated by alternative pre-mRNA splicing. In addition to these four factors, USF1, which is known to share the same DNA binding elements with USF2, was isolated for comparison. Electrophoretic mobility shift assays and cotransfection studies of the expression constructs with reporter gene constructs revealed that the above five factors have different binding activities for element F with different transactivation potencies. USF1 and USF2 demonstrate the highest binding activity to element F, yet show the lowest element F-dependent transactivation. TFE3 has a high transactivation potency but the lowest binding activity. TFEC-l demonstrates a high binding activity with the highest transactivation potency, whereas TFEC-s has the same binding activity as TFEC-l with intermediate transactivation. We also demonstrate that an N-terminal activation domain exists only in TFEC-l, whereas a C-terminal activation domain is common to both the l and s isoforms. This study provides the first evidence of TFEC being an activator of transcription, with two separate activation domains.
    [Abstract] [Full Text] [Related] [New Search]