These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ramification amplification: a novel isothermal DNA amplification method.
    Author: Zhang DY, Brandwein M, Hsuih T, Li HB.
    Journal: Mol Diagn; 2001 Jun; 6(2):141-50. PubMed ID: 11468700.
    Abstract:
    We have developed a novel isothermal DNA amplification method with an amplification mechanism quite different from conventional PCR. This method uses a specially designed circular probe (C-probe) in which the 3' and 5' ends are brought together in juxtaposition by hybridization to a target. The two ends are then covalently linked by a T4 DNA ligase in a target-dependent manner, producing a closed DNA circle. In the presence of an excess of primers (forward and reverse primers), a DNA polymerase extends the bound forward primer along the C-probe and displaces the downstream strand, generating a multimeric single-stranded DNA (ssDNA), analogous to the "rolling circle" replication of bacteriophages in vivo. This multimeric ssDNA then serves as a template for multiple reverse primers to hybridize, extend, and displace downstream DNA, generating a large ramified (branching) DNA complex. This ramification process continues until all ssDNAs become double-stranded, resulting in an exponential amplification that distinguishes itself from the previously described nonexponential rolling circle amplification. In this report, we prove the principle of ramification amplification. By using a unique bacteriophage DNA polymerase, Ø29 DNA Polymerase, that has an intrinsic high processivity, we are able to achieve significant amplification within 1 hour at 35 degrees C. In addition, we applied this technique for in situ detection of Epstein-Barr viral sequences in Raji cells.
    [Abstract] [Full Text] [Related] [New Search]