These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of glucose on lipolysis and on release of lipolytic products in isolated adipocytes.
    Author: Naito C, Okada K.
    Journal: Am J Physiol; 1975 Jan; 228(1):92-7. PubMed ID: 1147032.
    Abstract:
    Isolated adipocytes were prepared from epididymal adipose tissues removed from rats which had been fed or starved for 48 h (fed adipocytes or fasted adipocytes). These cells were incubated at 37 degrees C for 90 min in media containing 0, 3, or 30 mM glucose, with or without norepinephrine (1.0 mug/ml). Then the concentrations of free fatty acids (FFA) and free glycerol (FG) in the total mixture (medium plus cells) and in the medium alone were measured. Addition of glucose to the medium increased the total PG, presumably by increasing the basal lipolysis, and it decreased the intracellular retention ratio of FG (the ratio of intracellular FG to total FG). Addition of glucose did not change the total FFA, but decreased the FFA/FG ratio, presumably by increasing reesterification. The increase in FG and decrease in the FFA/FG ratio on addition of glucose were greater in fed than in fasted adipocytes. The intracellular retention ratio of FFA also decreased on addition of glucose. Glucose enhanced norepinephrine-induced lipolysis (release of free glycerol), and this effect of glucose was greater in fasted adipocytes. However, the increase in FFA in fasted adipocytes induced by norepinephrine was not altered by addition of glucose. In fed adipocytes norepinephrine decreased the total FFA in the presence of glucose. Reesterification of FFA following norepinephrine was increased by addition of glucose. Norepinephrine decreased the intracellular retention ratios of FG and FFA in the presence of glucose. These results suggest that the passage of the lipolytic products, FFA and FG, through the cell membranes may not occur by simple diffusion, but may require energy.
    [Abstract] [Full Text] [Related] [New Search]