These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inoculation of human interleukin-17 gene-transfected Meth-A fibrosarcoma cells induces T cell-dependent tumor-specific immunity in mice. Author: Hirahara N, Nio Y, Sasaki S, Minari Y, Takamura M, Iguchi C, Dong M, Yamasawa K, Tamura K. Journal: Oncology; 2001; 61(1):79-89. PubMed ID: 11474253. Abstract: OBJECTIVE: The biological activities of interleukin-17 (IL-17), a newly cloned cytokine, have not been fully elucidated. The present study was designed to assess the in vitro and in vivo effect of transfecting the IL-17 gene into tumor cells. METHODS: A complementary DNA (cDNA) encoding human IL-17 (hIL-17) was obtained by polymerase chain reaction amplification from the human CD4+ T cell cDNA library and inserted into the plasmid pRc/cytomegalovirus to construct an expression vector for the hIL-17 gene. Murine Meth-A fibrosarcoma cells were transfected with the hIL-17 gene using the lipofectin method. The hIL-17 gene-expressing clone (Meth-A/IL-17) was selected and analyzed for cytokine expression by Northern blot. RESULTS: There was no significant difference in the in vitro proliferation rate among parent Meth-A, cells transfected with vector alone and Meth-A/IL-17 cells. When the tumor cells were transplanted subcutaneously into BALB/c nude (nu+/nu+) mice, there was no difference in in vivo growth rates among the three cell lines. Challenge with tumor cells in conventional BALB/c mice, however, resulted in the rejection of Meth-A/IL-17 cells, but the other two lines did grow. After immunization with Meth-A/IL-17 cells, the mice were rechallenged by parent Meth-A or syngeneic MOPC-104E plasmacytoma cells; the immunized mice rejected the Meth-A cells, but not the MOPC-104E cells. Injecting the anti-thy 1,2 (CD90), anti-CD4 or anti-CD8 monoclonal antibody into conventional BALB/c mice resulted in the resumption of in vivo growth of Meth-A/IL-17 cells, but injecting the anti-asialo GM1 antibody did not. Furthermore, flow cytometric analysis demonstrated a significant increase in the expression of major histocompatibility complex (MHC) class I and class II antigens and lymphocyte function-associated antigen-1 on Meth-A/IL-17 cells. CONCLUSION: Meth-A cells transfected with the hIL-17 gene can induce tumor-specific antitumor immunity by augmenting the expression of MHC class I and II antigens, and both CD4+ and CD8+ T cells may play important roles in inducing antitumor immunity, suggesting the possibility of developing a tumor vaccine incorporating IL-17-transfected tumor cells.[Abstract] [Full Text] [Related] [New Search]