These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Recombinant hTASK1 is an O(2)-sensitive K(+) channel.
    Author: Lewis A, Hartness ME, Chapman CG, Fearon IM, Meadows HJ, Peers C, Kemp PJ.
    Journal: Biochem Biophys Res Commun; 2001 Aug 03; 285(5):1290-4. PubMed ID: 11478797.
    Abstract:
    Hypoxic inhibition of background K(+) channels is crucial to O(2) sensing by chemoreceptor tissues, but direct demonstration of O(2) sensitivity by any member of this K(+) channel family is lacking. HEK293 cells were transfected with a pcDNA3.1-hTASK1 construct; expression of hTASK1 was verified using RT-PCR and immunocytochemistry. Whole-cell K(+) currents of cells stably expressing hTASK-1 were, as anticipated, extremely sensitive to extracellular pH, within the physiological range (IC(50) approximately 7.0). All cells expressing this signature pH sensitivity were acutely modulated by pO(2); reduction of pO(2) from 150 to <40 mmHg (at pH 7.4) caused rapid and reversible suppression of pH-sensitive K(+) currents. Furthermore, these two regulatory signals clearly acted at the same channel, since the magnitude of the O(2)-sensitive current was dependent on the extracellular pH. These data represent the first direct verification that hTASK1 is O(2)-sensitive and reinforce the idea that this K(+) channel is key to O(2) sensing in chemoreceptors.
    [Abstract] [Full Text] [Related] [New Search]