These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition and stimulation of phospholipid scrambling activity. Consequences for lipid asymmetry, echinocytosis, and microvesiculation of erythrocytes.
    Author: Kamp D, Sieberg T, Haest CW.
    Journal: Biochemistry; 2001 Aug 07; 40(31):9438-46. PubMed ID: 11478914.
    Abstract:
    An increase of the intracellular Ca(2+) concentration in erythrocytes is known to activate rapid nonspecific bidirectional translocation of membrane-inserted phospholipid probes and to decrease the asymmetric distribution of endogenous membrane phospholipids. These scrambling effects are now shown to be suppressed by pretreatment of cells with the essentially impermeable reagents 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and 2,4,6-trinitrobenzenesulfonate. The inhibitory effects are no longer observed during renewed activation of scrambling following a first transient activation by Ca(2+). Assuming the involvement of the human scramblase, this suggests a conformational alteration of this protein during activation by Ca(2+). Marked suppression of scrambling activity is also observed in cells pretreated with the disulfide reducing agent dithioerythritol which can be reverted by the SH oxidizing agent diamide. This indicates the importance of intramolecular and/or intersubunit disulfide bonds for the function of the scramblase. On the other hand, treatment of cells with the SH reagents N-ethylmaleimide and phenylarsine oxide enhances Ca(2+)-activated scrambling and diminution of asymmetry of membrane phospholipids. This suggests an allosteric connection of several protein SH groups to the translocation mechanism. The inhibitors retain their strong suppressive effects. Besides covalent modification, addition of oligomycin highly stimulates and addition of clotrimazole suppresses the Ca(2+)-activated translocation. No evidence for a role of the ATP-binding cassette transporter ABCA1 in the Ca(2+)-activated outward translocation is obtained. Suppression of phospholipid scrambling by dithioerythritol inhibits Ca(2+)-induced spheroechinocytosis and reduces the extent of subsequent microvesiculation. Scrambling of endogenous phospholipids is proposed to induce echinocytosis and to have only a stimulatory effect on microvesiculation.
    [Abstract] [Full Text] [Related] [New Search]