These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Calretinin and calbindin D-28k delay the onset of cell death after excitotoxic stimulation in transfected P19 cells. Author: D'Orlando C, Fellay B, Schwaller B, Salicio V, Bloc A, Gotzos V, Celio MR. Journal: Brain Res; 2001 Aug 03; 909(1-2):145-58. PubMed ID: 11478931. Abstract: In some neurological diseases, injury to neurones reflects an over-stimulation of their receptors for excitatory amino acids. This response may disturb the Ca(2+)-homeostasis and lead to a pronounced and sustained increase in the intracellular concentration of this ion. On the basis of data derived from correlative studies, calcium-binding proteins have been postulated to play a protective role in these pathologies. We tested, directly, the capacity of the three calcium-binding proteins calretinin (CR), calbindin D-28k (CB) and parvalbumin (PV) to buffer [Ca(2+)], and to protect cells against excitotoxic death. We used P19 murine embryonic carcinoma cells, which can be specifically induced (by retinoic acid) to transform into nerve-like ones. The differentiated cells express functional glutamate-receptors and are susceptible to excitotoxic shock. Undifferentiated P19-cells were stably transfected with the cDNA for CR, CB or PV, induced to differentiate, and then exposed to NMDA, a glutamate-receptor agonist. The survival rates of clones expressing CR, CB or PV were compared with those of untransfected P19-cells using the lactate-dehydrogenase assay. CR- and CB-expressing cells were protected from death during the first 2 h of exposure to NMDA. This protection was, however, transient, and did not suffice to rescue P19-cells after prolonged stimulation. Two of the three PV-transfected clones raised were vulnerable to NMDA-induced excitotoxicity; the third, which expressed the lowest level of PV, was protected to a similar degree as that found for the CR- and CB-transfected clones. Our results indicate that in the P19-cell model, CR and CB can help to delay the onset of cell death after excitotoxic stimulation.[Abstract] [Full Text] [Related] [New Search]