These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MR diffusion-weighted imaging of kidney: differentiation between hydronephrosis and pyonephrosis. Author: Chan JH, Tsui EY, Luk SH, Fung SL, Cheung YK, Chan MS, Yuen MK, Mak SF, Wong KP. Journal: Clin Imaging; 2001; 25(2):110-3. PubMed ID: 11483420. Abstract: The objective of the study was to evaluate the capability and reliability of the magnetic resonance (MR) diffusion-weighted imaging (DWI) in differentiation between hydronephrosis and pyonephrosis. Single-shot echoplanar MR diffusion-weighted imaging was performed in 12 patients who had dilatation of the renal pelvis and calyces detected by ultrasonography (US). Microbiological tests confirmed that there were four cases of pyonephrosis and eight cases of hydronephrosis. Signal intensities of the collecting (pelvicalyceal) systems on the diffusion-weighted images and apparent diffusion coefficient (ADC) maps were noted. ADC values of the pelvicalyceal system in all patients were computed and compared using Student's t test. On diffusion-weighted images, the pelvicalyceal system of the hydronephrotic kidney was hypointense while the pelvicalyceal system of the pyonephrotic kidney was markedly hyperintense. The mean ADCs of the hydronephrotic and pyonephrotic renal pelvis were 2.98 +/- 0.65 x 10(-3) and 0.64 +/- 0.35 x 10(-3) mm(2)/s, respectively. The extremely low ADC of the renal pelvis of the pyonephrotic kidney accounted for its signal hyperintensity on diffusion-weighted images as well as signal hypointensity on ADC maps. In conclusion, the MR diffusion-weighted imaging may be a reliable tool to differentiate pyonephrosis from hydronephrosis.[Abstract] [Full Text] [Related] [New Search]