These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phase, compositional, and morphological changes of human dentin after Nd:YAG laser treatment.
    Author: Lin CP, Lee BS, Lin FH, Kok SH, Lan WH.
    Journal: J Endod; 2001 Jun; 27(6):389-93. PubMed ID: 11487131.
    Abstract:
    Although techniques for repairing root fracture have been proposed, the prognosis is generally poor. If the fusion of a root fracture by laser is possible, it will offer an alternative to extraction. Our group has attempted to use lasers to fuse a low melting-point bioactive glass to fractured dentin. This report is focused on the phase, compositional, and morphological changes observed by means of X-ray diffractometer, Fourier transforming infrared spectroscopy, and scanning electron microscopy-energy dispersive X-ray spectroscopy in human dentin after exposure to Nd:YAG laser. The irradiation energies were from 150 mJ/ pulse-10 pps-4 s to 150 mJ/pulse-30 pps-4 s. After exposure to Nd:YAG laser, dentin showed four peaks on the X-ray diffractometer that corresponding to a-tricalcium phosphate (TCP) and beta-TCP at 20 = 30.78 degrees/34.21 degrees and 32.47 degrees/33.05 degrees, respectively. The peaks of a-TCP and beta-TCP gradually increased in intensity with the elevation of irradiation energy. In Fourier transforming infrared analysis, two absorption bands at 2200 cm(-1) and 2015 cm(-1) could be traced on dentin treated by Nd:YAG laser with the irradiation energies beyond 150 mJ/pulse-10 pps-4 s. The energy dispersive X-ray results showed that the calcium/phosphorus ratios of the irradiated area proportionally increased with the elevation of irradiation energy. The laser energies of 150 mJ/ pulse-30 pps-4 s and 150 mJ/pulse-20 pps-4 s could result in the a-TCP formation and collagen breakdown. However, the formation of glass-like melted substances without a-TCP at the irradiated site was induced by the energy output of 150 mJ/ pulse-10 pps-4 s. Scanning electron micrographs also revealed that the laser energy of 150 mJ/ pulse-10 pps-4 s was sufficient to prompt melting and recrystallization of dentin crystals without cracking. Therefore, we suggest that the irradiation energy of Nd:YAG laser used to fuse a low melting-point bioactive glass to dentin is 150 mJ/ pulse-10 pps-4 s.
    [Abstract] [Full Text] [Related] [New Search]