These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro induction of CD25+ CD4+ regulatory T cells by the neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH).
    Author: Taylor A, Namba K.
    Journal: Immunol Cell Biol; 2001 Aug; 79(4):358-67. PubMed ID: 11488983.
    Abstract:
    Recently, we have found that the neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) not only suppresses IFN-gamma production, but also induces TGF-beta1 production by activated effector T cells. These alpha-MSH- treated effector T cells function as regulatory T cells in that they suppress IFN-gamma production and hypersensitivity mediated by other effector T cells. Experimental autoimmune uveoretinitis (EAU) was suppressed in its severity and incidence in mice that were injected with primed T cells activated in vitro by APC and antigen in the presence of alpha-MSH. Moreover, it appeared that alpha-MSH had converted a population of effector T cells polarized to mediate hypersensitivity into a population of T cells that now mediated immunoregulation. To characterize these alpha-MSH- treated T cells, primed T cells were TCR-stimulated in the presence of alpha-MSH in vitro and their lymphokine profile was examined. Such effector T cells displayed enhanced levels of TGF-beta1 production and no IFN-gamma or IL-10, with IL-4 levels remaining unchanged in comparison with inactivated T cells. In addition, if soluble TGF-beta receptor II was added to cocultures of alpha-MSH-treated T cells and activated Th1 cells, the alpha-MSH-treated T cells could not suppress IFN-gamma production by the Th1 cells. These results suggest that alpha-MSH induces T cells with a regulatory lymphokine pattern, and that through their production of TGF-beta1 these cells suppress other effector T cells. Examination of the alpha-MSH-treated T cells showed that alpha-MSH did not alter the phosphorylation of CD3 molecules following TCR engagement. Primed T cells express the melanocortin 5 receptor (MC5r), a receptor that is linked to an intracellular signalling pathway shared by other cytokine receptors. Blocking the receptor with antibody prevented alpha-MSH from suppressing IFN-gamma production by the activated regulatory T cells, suggesting that alpha-MSH immunoregulation is through the MC5r on primed T cells. Surface staining and cell sorting of the alpha-MSH- treated primed T cells showed that the regulatory T cells are CD25+ CD4+ T cells. From these results we find that alpha-MSH can mediate the induction of CD25+ CD4+ regulatory T cells. These regulatory T cells require specific antigen for activation, but through non-specific TGF-beta1-mediated mechanisms they can suppress other effector T cells.
    [Abstract] [Full Text] [Related] [New Search]