These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification and reactivity of the major metabolite (beta-1-glucuronide) of the anti-tumour agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) in humans. Author: Zhou SF, Paxton JW, Tingle MD, Kestell P, Jameson MB, Thompson PI, Baguley BC. Journal: Xenobiotica; 2001 May; 31(5):277-93. PubMed ID: 11491389. Abstract: 1. The novel anti-tumour agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) is extensively metabolized by glucuronidation and 6-methylhydroxylation, resulting in DMXAA acyl glucuronide (DMXAA-G) and 6-hydroxymethyl-5-methylxanthenone-4-acetic acid (6-OH-MXAA). 2. The major human urinary metabolite of DMXAA was isolated and purified by a solid-phase extraction (SPE) method. The isolated metabolite was hydrolysed to free DMXAA by strong base, and by beta-glucuronidase. Liquid chromatography-mass spectrometry (LC-MS) and spectral data indicated the presence of a molecular ion [M + 1]+ at m/z 459, which was consistent with the molecular weight of protonated DMXAA-G. 3. The glucuronide was unstable in buffer at physiological pH, plasma and blood with species variability in half-life. Hydrolysis and intramolecular migration were major degradation pathways. 4. In vitro and in vivo formation of DMXAA-protein adducts was observed. The formation of DMXAA-protein adducts in cancer patients receiving DMXAA was significantly correlated with plasma DMXAA-G concentration and maximum plasma DMXAA concentration. 5. At least five metabolites of DMXAA were observed in patient urine, with up to 60% of the total dose excreted as DMXAA-G, 5.5% as 6-OH-MXAA and 4.5% as the glucuronide of 6-OH-MXAA. 6. These data suggest that the major metabolite in patients' urine is DMXAA beta-1-glucuronide, which may undergo hydrolysis, molecular rearrangement and covalent binding to plasma protein. The reactive properties of DMXAA-G may have important implications for the pharmacokinetics, pharmacodynamics and toxicity of DMXAA.[Abstract] [Full Text] [Related] [New Search]