These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 5. Probabilistic risk assessment of linear alkylbenzene sulfonates in sludge-amended soils. Author: Jensen J, Løkke H, Holmstrup M, Krogh PH, Elsgaard L. Journal: Environ Toxicol Chem; 2001 Aug; 20(8):1690-7. PubMed ID: 11491550. Abstract: Linear alkylbenzene sulfonates (LAS) can be found in high concentrations in sewage sludge and, hence, may enter the soil compartment as a result of sludge application. Here, LAS may pose a risk for soil-dwelling organisms. In the present probabilistic risk assessment, statistical extrapolation has been used to assess the risk of LAS to soil ecosystems. By use of a log-normal distribution model, the predicted no-effect concentration (PNEC) was estimated for soil fauna, plants, and a combination of these. Due to the heterogeneous endpoints for microorganisms, including functional as well as structural parameters, the use of sensitivity distributions is not considered to be applicable to this group of organisms, and a direct, expert evaluation of toxicity data was used instead. The soil concentration after sludge application was predicted for a number of scenarios and used as the predicted environmental concentration (PEC) in the risk characterization and calculation of risk quotients (RQ = PEC/PNEC). A LAS concentration of 4.6 mg/kg was used as the current best estimate of PNEC in all RQ calculations. Three levels of LAS contamination (530, 2,600, and 16,100 mg/kg), three half-lives (10, 25, and 40 d), and five different sludge loads (2, 4, 6, 8, and 10 t/ha) were included in the risk scenarios. In Denmark, the initial risk ratio would reach 1.5 in a realistic worst-case consideration. For countries not having similar sludge regulations, the estimated risk ratio may initially be considerably higher. However, even in the most extreme scenarios, the level of LAS is expected to be well beyond the estimated PNEC one year after application. The present risk assessment, therefore, concludes that LAS does not pose a significant risk to fauna, plants, and essential functions of agricultural soils as a result of normal sewage sludge amendment. However, risks have been identified in worst-case scenarios.[Abstract] [Full Text] [Related] [New Search]