These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Paradoxical body and kidney growth in potassium deficiency. Author: Fervenza F, Tsao T, Rabkin R. Journal: Ren Fail; 2001; 23(3-4):339-46. PubMed ID: 11499550. Abstract: In the growing animal, K deficiency (KD) retards body growth, but paradoxically stimulates renal growth. If KD persists, interstitial infiltrates appear and eventually tubulointerstitial fibrosis develops. In patients with chronic KD, renal cysts may form and with time tubulointerstitial disease with renal failure develops. Since early in KD, kidney IGF-I levels increase and may be a cause of the renal hypertrophy, and as TGF-beta promotes hypertrophy and fibrosis, we examined the expression of these growth factors in chronic KD. Rats were given a KD diet or pair or ad-lib fed a normal K diet. After 21 days, KD rats weighed less than pair fed controls, while the kidneys were 49% larger Serum IGF-I and kidney IGF-I protein levels were depressed, as were IGF-I mRNA levels, and is largely attributable to decreased food intake. Kidney IGFBP-1 and TGF-beta mRNA levels were increased (p < 0.05). There was marked hypertrophy and adenomatous hyperplasia of outer medullary collecting ducts, hypertrophy of thick ascending limbs of Henle (TALH) and interstitial infiltrates. Both nephron segments stained strongly for IGF-I and IGFBP-1. Only the non-hyperplastic TALH was strongly TGF-beta positive. Interstitial infiltrates containing monocytes/macrophages were prominent. These findings are consistent with a sustained role for IGF-I in promoting the renal hypertrophy of KD and appear to be caused by local trapping of IGF-I by the over-expressed IGFBP-1. Localization of TGF-beta to the hypertrophied non-hypoplastic tubules containing IGF-I, suggests that TGF-beta may be acting to convert the proliferative action of IGF-I into a hypertrophic response. TGF-beta may also contribute to the genesis of the tubulointerstitial infiltrate. Finally, the reduced levels of serum IGF-1 levels may be a cause of the blunted body growth.[Abstract] [Full Text] [Related] [New Search]