These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hck SH3 domain-dependent abrogation of Nef-induced class 1 MHC down-regulation.
    Author: Chang AH, O'Shaughnessy MV, Jirik FR.
    Journal: Eur J Immunol; 2001 Aug; 31(8):2382-7. PubMed ID: 11500821.
    Abstract:
    The ability of specific virally encoded proteins to down-regulate MHC class I molecules may enable infected cells to elude killing by CTL. In the case of HIV-1, Nef appears to be responsible for this effect. Thus, interfering with Nef-induced MHC class I down-regulation would be a strategy for increasing HIV-1-specific CTL activity, particularly towards long-lived T cell populations such as memory T cells that harbor replication-competent virus. Here, using two Nef-expressing human cell model systems, we show that a dominant-negative mutant derived from the Hck protein-tyrosine kinase, composed of the Hck N-terminal region, as well as the SH3 and SH2 domains, was able to inhibit Nef-induced MHC class I molecule down-regulation. This effect was SH3 domain dependent as it was not evident when the cells were transfected with DN-Hck-W93F, an SH3 domain mutant. The inhibitory effect of dominant-negative-Hck (DN-Hck) on Nef-induced class I down-regulation suggests that this Nef-mediated effect requires an interaction between the Nef polyproline site and an SH3-containing cellular protein that is involved in MHC class I molecule turnover. Interfering with the function of the Nef SH3 binding site in this way represents a strategy for assisting the host CTL response to clear HIV-1-infected cells.
    [Abstract] [Full Text] [Related] [New Search]