These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neonatal estrogen exposure inhibits steroidogenesis in the developing rat ovary.
    Author: Ikeda Y, Nagai A, Ikeda MA, Hayashi S.
    Journal: Dev Dyn; 2001 Aug; 221(4):443-53. PubMed ID: 11500981.
    Abstract:
    Treatment of newborn female rats with estrogens significantly inhibits the growth and differentiation of the ovary. To understand the molecular mechanism of estrogen action in the induction of abnormal ovary, we examined the expression profiles of steroidogenic factor 1 (SF-1) and several of its target genes in the developing ovaries after neonatal exposure to synthetic estrogen, estradiol benzoate (EB) by using reverse transcriptase polymerase chain reaction, in situ hybridization, and immunohistochemistry. Morphologic examination indicated inhibitory effects of estrogen on the stratification of follicles and development of theca and interstitial gland during postnatal ovarian differentiation. The expression of the steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage cytochrome P450 (P450(SCC)), which are both essential for steroid biosynthesis, markedly decreased in theca and interstitial cells throughout the postnatal development of the EB-treated ovary. However, expression of the transcriptional activator of the two genes, SF-1 was unaffected in theca and interstitial cells, although the number of these cells was lower in the EB-treated ovary than in the control ovary. The expression of the estrogen mediator, estrogen receptor-alpha (ER-alpha), diminished specifically in theca cells at P6 and recovered by P14 in the EB-treated ovary. These results indicate that the effect of estrogens is mediated by means of ER-alpha resulting in the down-regulation of StAR and P450(SCC) genes during early postnatal development of the ovary. These results suggest that the abnormal ovarian development by neonatal estrogen treatment is closely correlated with the reduced steroidogenic activity, and the data obtained by using this animal model may account in part the mechanism for aberrant development and function of the ovary in prenatally estrogen-exposed humans.
    [Abstract] [Full Text] [Related] [New Search]