These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A New Method of Calculating Pore Size Distribution: Analysis of Adsorption Isotherms of N(2) and CCl(4) for a Series of MCM-41 Mesoporous Silicas. Author: Hakuman M, Naono H. Journal: J Colloid Interface Sci; 2001 Sep 01; 241(1):127-141. PubMed ID: 11502116. Abstract: The adsorption isotherms of N(2) gas at 77 K and CCl(4) vapor at 283.1(5), 298.1(5), and 308.1(5) K were measured for six samples of the mesoporous silicas having uniform cylindrical pores (MCM-41). The pore radii of the six samples (r(p)), which were evaluated from the alpha(s) plots of the N(2) isotherms, were 1.13, 1.29, 1.50, 1.65, 1.90, and 2.53 nm. The CCl(4) adsorption isotherms show that the capillary condensation occurs at the very narrow P/P(0) range. The core radii of the six adsorbents (r(c)), which were estimated from a comparison plot of the CCl(4) isotherm, were 0.90, 1.01, 1.28, 1.37, 1.60, and 2.17 nm. In the comparison plot, the standard CCl(4) isotherm for nonporous silica was used as the reference isotherm. It has been clarified that the Polanyi adsorption potential of capillary condensation is proportional to the reciprocal of the core radii: RT ln(P(0)/P)=5.37r(c)(-1) nm(-1), ln(P(0)/P)=2.17r(c)(-1) nm(-1) at 298.1(5) K, [A]. The statistical thickness of adsorbed CCl(4) on the curved surface (t((pore))), which was estimated from the difference between the pore radii and the core radii, was given by Eq. [B]: t((pore))=0.188+0.336(P/P(0))+0.382(P/P(0))(2) nm [B], (0.08<P/P(0)<0.60). The equations [A] and [B] give the fundamental information necessary to calculate the pore size distribution of mesoporous adsorbents in the range of r(p)=1.0-5 nm. Furthermore, it has been found that the pore size distribution up to r(p)=55 nm can be estimated from Eq. [A] and the adsorbed thickness of CCl(4) up to P/P(0)=0.96 (cf. Table 5). Copyright 2001 Academic Press.[Abstract] [Full Text] [Related] [New Search]