These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Determination of trace metals by capillary electrophoresis. Author: Fung YF, Lau KM. Journal: Electrophoresis; 2001 Jul; 22(11):2192-200. PubMed ID: 11504052. Abstract: A new analytical procedure is developed using a strong complexing agent, 1,10-phenanthroline (Phen), for direct UV detection of Zn, Mn, Cu, Co, Cd, and Fe at microg/L concentrations in environmental water samples. The metal chelates formed showed different electrophoretic mobilities and solved the comigration problem for capillary electrophoresis (CE) separation of free metal ions. To obtain stable metal-Phen chelates during the capillary zone electrophoresis (CZE) run, both pre-column and on-column complexation are required and threefold excess of Phen over metal ions should be added to the sample. The optimized background electrolyte (BGE) consists of 30 mM hydroxylamine hydrochloride and 0.1% methanol at pH 3.6. Under hydrodynamic sampling, CE run at + 20 kV in 65 cm x 0.05 mm ID fused-silica column with detection at 265 nm, baseline separation, satisfactory working ranges (10 microg/L to 5.5 mg/L), sensitive detection limits (1-3 microg/L), good repeatability for migration times (relative standard deviation, RSD 0.36-0.81%, n = 5), peak area (RSD 3.2-4.2%, n = 5) and peak height (RSD 3.2-4.5%, n = 5) were obtained for the metal cations investigated. The reliability of the method was established by parallel determination using the inductively coupled plasma-atomic emission spectrometry (ICP-AES) method giving results within statistical variation. The procedure developed is shown to provide a quick, sensitive, precise, and economic method for simultaneous determination of metal cations that can form stable chelates with Phen.[Abstract] [Full Text] [Related] [New Search]