These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrical stimulation of the prelemniscal radiation in the treatment of Parkinson's disease: an old target revised with new techniques. Author: Velasco F, Jiménez F, Pérez ML, Carrillo-Ruiz JD, Velasco AL, Ceballos J, Velasco M. Journal: Neurosurgery; 2001 Aug; 49(2):293-306; discussion 306-8. PubMed ID: 11504105. Abstract: OBJECTIVE: In the treatment of tremor and rigidity in patients with Parkinson's disease (PD), the prelemniscal radiation (RAPRL), a subthalamic bundle of fibers, is an exquisite target that can be visualized easily on ventriculograms. We sought to evaluate the effect of electrical stimulation of the RAPRL on symptoms and signs of PD in a long-term trial and to determine the localization of the stimulated area by means of stereotactic magnetic resonance imaging studies. METHODS: Ten patients with PD predominantly on one side had tetrapolar electrodes stereotactically oriented through a frontal parasagittal approach to the RAPRL contralateral to the most prominent symptoms. Preoperative and postoperative evaluations at 3, 6, 9, and 12 months after surgery were performed using conventional PD scales and quantitative evaluations of tremor amplitude and reaction time. Stereotactic high-resolution magnetic resonance imaging studies with the electrodes in place were used for anatomic localization. RESULTS: In all patients, temporary suppression of tremor occurred when the electrodes reached the target. The most effective stimulation was obtained when the pair of contacts was placed in the RAPRL. Long-term stimulation at 130 Hz, 0.09 to 0.450 milliseconds, and 1.5 to 3.0 V produced significant improvement in tremor and rigidity and mild improvement in bradykinesia. CONCLUSION: The RAPRL is an effective target for the alleviation of tremor and rigidity in patients with PD by either lesioning or neuromodulation; however, neuromodulation has the advantage of not inducing an increase in bradykinesia. The stimulated area seems to be independent of the subthalamic nucleus.[Abstract] [Full Text] [Related] [New Search]