These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thermodynamic stability of base pairs between 2-hydroxyadenine and incoming nucleotides as a determinant of nucleotide incorporation specificity during replication.
    Author: Kawakami J, Kamiya H, Yasuda K, Fujiki H, Kasai H, Sugimoto N.
    Journal: Nucleic Acids Res; 2001 Aug 15; 29(16):3289-96. PubMed ID: 11504865.
    Abstract:
    We investigated the thermodynamic stability of double-stranded DNAs with an oxidative DNA lesion, 2-hydroxyadenine (2-OH-Ade), in two different sequence contexts (5'-GA*C-3' and 5'-TA*A-3', A* represents 2-OH-Ade). When an A*-N pair (N, any nucleotide base) was located in the center of a duplex, the thermodynamic stabilities of the duplexes were similar for all the natural bases except A (N = T, C and G). On the other hand, for the duplexes with the A*-N pair at the end, which mimic the nucleotide incorporation step, the stabilities of the duplexes were dependent on their sequence. The order of stability is T > G > C >> A in the 5'-GA*C-3' sequences and T > A > C > G in the 5'-TA*A-3' sequences. Because T/G/C and T/A are nucleotides incorporated opposite to 2-OH-Ade in the 5'-GA*C-3' and 5'-TA*A-3' sequences, respectively, these results agree with the tendency of mutagenic misincorporation of the nucleotides opposite to 2-OH-Ade in vitro. Thus, the thermodynamic stability of the A*-N base pair may be an important factor for the mutation spectra of 2-OH-Ade.
    [Abstract] [Full Text] [Related] [New Search]