These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Estrogen imprinting of the developing prostate gland is mediated through stromal estrogen receptor alpha: studies with alphaERKO and betaERKO mice.
    Author: Prins GS, Birch L, Couse JF, Choi I, Katzenellenbogen B, Korach KS.
    Journal: Cancer Res; 2001 Aug 15; 61(16):6089-97. PubMed ID: 11507058.
    Abstract:
    Neonatal exposure of rodents to high doses of estrogen permanently imprints the growth and function of the prostate and predisposes this gland to hyperplasia and severe dysplasia analogous to prostatic intraepithelial neoplasia with aging. Because the rodent prostate gland expresses estrogen receptor (ER)-alpha within a subpopulation of stromal cells and ERbeta within epithelial cells, the present study was undertaken to determine the specific ER(s) involved in mediating prostatic developmental estrogenization. Wild-type (WT) mice, homozygous mutant ER (ERKO) alpha -/- mice, and betaERKO -/- mice were injected with 2 microg of diethylstilbestrol (DES) or oil (controls) on days 1, 3, and 5 of life. Reproductive tracts were excised on days 5 or 10 (prepubertal), day 30 (pubertal), day 90 (young adult), or with aging at 6, 12, and 18 months of age. Prostate complexes were microdissected and examined histologically for prostatic lesions and markers of estrogenization. Immunocytochemistry was used to examine expression of androgen receptor, ERalpha, ERbeta, cytokeratin 14 (basal cells), cytokeratin 18 (luminal cells), and dorsolateral protein over time in the treated mice. In WT-DES mice, developmental estrogenization of the prostate was observed at all of the time points as compared with WT-oil mice. These prostatic imprints included transient up-regulation of ERalpha, down-regulation of androgen receptor, decreased ERbeta levels in adult prostate epithelium, lack of DLP secretory protein, and a continuous layer of basal cells lining the ducts. With aging, epithelial dysplasia and inflammatory cell infiltrate were observed in the ventral and dorsolateral prostate lobes. In contrast, the prostates of alphaERKO mice exhibited no response to neonatal DES either immediately after exposure or throughout life up to 18 months of age. Furthermore, neonatal DES treatment of betaERKO mice resulted in a prostatic response similar to that observed in WT animals. The present findings indicate that ERalpha is the dominant ER form mediating the developmental estrogenization of the prostate gland. If epithelial ERbeta is involved in some component of estrogen imprinting, its role would be considered minor and would require the presence of ERalpha expression in the prostatic stromal cells.
    [Abstract] [Full Text] [Related] [New Search]