These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Venom from Anemesia species of spider modulates high voltage-activated Ca(2+) currents from rat cultured sensory neurones and excitatory post synaptic currents from rat hippocampal slices. Author: Kalikulov D, Ayar A, Nuritova F, Frenguelli BG, McClelland D, Martin DJ, Davidson I, Scott RH. Journal: Cell Calcium; 2001 Sep; 30(3):212-21. PubMed ID: 11509000. Abstract: The actions of crude venom from Anemesia species of spider were investigated in cultured dorsal root ganglion neurones from neonatal rats and hippocampal slices. Using mass spectrometry (MALDI-TOF MS), 10-12 distinct peptides with masses between about 3 and 10kDa were identified in the crude spider venom. At a concentration of 5 microg/ml crude Anemesia venom transiently enhanced the mean peak whole cell voltage-activated Ca(2+) current in a voltage-dependent manner and potentiated transient increases in intracellular Ca(2+) triggered by 30mM KCI as measured using Fura-2 fluorescence imaging. Additionally, 5-8 microg/ml Anemesia venom increased the amplitude of glutamatergic excitatory postsynaptic currents evoked in hippocampal slices. Omega-Conotoxin GVIA (1 microM) prevented the increase in voltage-activated Ca(2+) currents produced by Anemesia venom. This attenuation occurred when the cone shell toxin was applied before or after the spider venom. Anemesia venom (5 microg/ml) created no significant change in evoked action potentials but produced modest but significant inhibition of voltage-activated K(+) currents. At a concentration of 50 microg/ml Anemesia venom only produced reversible inhibitory effects, decreasing voltage-activated Ca(2+) currents. However, no significant effects on Ca(2+) currents were observed with a concentration of 0.5 microg/ml. The toxin(s) in the venom that enhanced Ca(2+) influx into sensory neurones was heat-sensitive and was made inactive by boiling or repetitive freeze-thawing. Boiled venom (5 microg/ml) produced significant inhibition of voltage-activated Ca(2+) currents and freeze-thawed venom inhibited Ca(2+) transients measured using Fura-2 fluorescence. Our data suggest that crude Anemesia venom contains components, which increased neuronal excitability and neurotransmission, at least in part this was mediated by enhancing Ca(2+) influx through N-type voltage-activated Ca(2+) channels.[Abstract] [Full Text] [Related] [New Search]