These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of head-down bed rest on the circadian rhythms of hormones and electrolytes involved in hydroelectrolytic regulation.
    Author: Millet C, Custaud MA, Allevard AM, Zaouali-Ajina M, Monk TH, Arnaud SB, Claustrat B, Gharib C, Gauquelin-Koch G.
    Journal: Eur J Appl Physiol; 2001 Jul; 85(1-2):74-81. PubMed ID: 11513324.
    Abstract:
    We investigated in six men the impact of a 17-day head-down bed rest (HDBR) on the circadian rhythms of the hormones and electrolytes involved in hydroelectrolytic regulation. This HDBR study was designed to mimic an actual spaceflight. Urine samples were collected at each voiding before, during and after HDBR. Urinary excretion of aldosterone, arginine vasopressin (AVP), cyclic guanosine monophosphate (cGMP), cortisol, electrolytes (Na+ and K+) and creatinine were determined. HDBR resulted in a significant reduction of body mass (P < 0.01) and of caloric intake [mean (SEM) 2,778 (37) kcal.24 h(-1) to 2,450 (36) kcal.24 h(-1), where 1 kcal.h(-1) = 1.163 J.s(-1); P< 0.01]. There was a significant increase in diastolic blood pressure [71.8 (0.7) mmHg vs 75.6 (0.91) mmHg], with no significant changes in either systolic blood pressure or heart rate. The nocturnal hormonal decrease of aldosterone was clearly evident only before and after HDBR, but the day/night difference did not appear during HDBR. The rhythm of K+ excretion was unchanged during HDBR, whereas for Na+ excretion, a large decrease was shown during the night as compared to the day. The circadian rhythm of cortisol persisted. These data suggest that exposure to a 17-day HDBR could induce an exaggeration of the amplitude of the Na+ rhythm and abolition of the aldosterone rhythm.
    [Abstract] [Full Text] [Related] [New Search]